少奴人妻久久中文字幕_亚洲无码二区东京热_国产高清无码日韩一二三区_制服丝袜人妻无码每日更新

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

解析AC-DC電源設計

鉅大LARGE  |  點擊量:997次  |  2020年06月17日  

即使是對相關經(jīng)驗最豐富的電源設計人員來說,要在一個小體積內實現(xiàn)電源效率最大化也不是一件容易的事。要小型電源設計的設備有很多,在給按時間內,這類設備可能要為負載供應數(shù)百瓦的功率。關于高度限制小于1U的系統(tǒng),強制空氣冷卻也許不可行,這意味著必須采用成本高昂的大表面積薄型散熱器來實現(xiàn)散熱管理。


AC/DC電源就是輸入為交流,輸出為直流的電源模塊。其中在這模塊內部包含有整流濾波電路,降壓電路和穩(wěn)壓電路。在AC/DC電源轉換應用中,要求有較寬的輸入范圍,通常要求:85V~265V的交流輸入,輸出電源轉換效率要求高,同時能有效提高節(jié)能性能,滿負載效率在AC/DC電源設計中是一項重要考慮因素。提高AC/DC轉換器效率,實現(xiàn)更好的節(jié)能性能的方法,是綠色能源的倡導。


在大多數(shù)情況下,工作在這些功率水平的AC-DC電源要某些類型的有源功率因數(shù)校正(pFC)。將功率半導體直接焊接到pCB板上然后再粘貼到底盤上,而不是使之絕緣并把它們用螺栓固定到底盤上??紤]到熱粘貼材料的成本,整個組裝成本將會下降。這也減少了電源的尺寸并減少了設備連接處溫度約10攝氏度,從而可將平均無故障時間間隔大約新增一倍。關于AC-DC電源,一般把一個非隔離離線升壓預轉換器用作pFC級,其DC輸出電壓作為下游隔離DC-DC轉換器的輸入。由于這兩個轉換器是彼此串聯(lián)的,故總體系統(tǒng)效率ηSYS為每個轉換器的效率的乘積:


(1)


由式(1)顯然可見,一種具有眾多高效特性的系統(tǒng)解決方法是結合交錯式雙臨界傳導模式(BCM)pFC與隔離式DC-DC轉換器,其中,前者后面跟著不對稱半橋(AHB),后者采用了帶自驅動同步整流器的倍流整流器次級端。


圖1.12V、300W、小型通用AC-DC電源。


關于300W-1kW范圍的pFC轉換器,應該考慮選擇交錯式臨界傳導模式(BCM)pFC,因為在相似的功率水平下,它的效率要高于持續(xù)傳導模式(CCM)pFC控制技術。交錯式BCMpFC基于一種可變頻率控制算法,在這種算法中,兩個pFC升壓功率級彼此同步180度錯相。由于具備有效的電感紋波電流消除,EMI濾波器和pFC輸出電容中常見的高峰值電流得以減小。輸出pFC大電容受益于紋波電流消除是因為流經(jīng)等效串聯(lián)電阻(ESR)的ACRMS電流減小。另外,由于升壓MOSFET在依賴于AC線的零電壓開關(ZVS)下關斷,在零電流開關(ZCS)下導通,故可以進一步提高效率。關于350W的交錯式BCMpFC設計,MOSFET散熱器可去掉,如圖1所示。另一方面,CCMpFC設計中使用的升壓MOSFET則易受與頻率相關的開關損耗的影響,而開關損耗與輸入電流及線電壓成比例。通過在零電流時關斷交錯式BCM升壓二極管,可防止反向恢復損耗,從而允許使用成本低廉的快速恢復整流二極管,而且在某些情況下可以無需散熱器。pFC轉換器工作時的固有特點是:輸出電壓調節(jié)采用電壓型pWM控制時9穩(wěn)態(tài)占空比Du為常數(shù)(即導通時間Ton為常數(shù)),輸人電流接近于正弦波。因此,控制電路中無須乘法器和電流控制,就可以實現(xiàn)功率因數(shù)校正。


關于隔離式DC-DC轉換器設計,半橋是一個很好的拓撲選擇,因為它有兩個互補驅動的初級端MOSFET,且最大漏源電壓受限于所加的DC輸入電壓。LLC通過可變頻率控制技術,利用與功率水平設計相關的寄生元素來實現(xiàn)ZVS。不過,由于經(jīng)調節(jié)的DC輸出只使用電容濾波,這種拓撲最適合的是輸出紋波較低、輸出電壓較高的應用。


AHB重要用于高性能模塊(如CpU、DMA和DSp等)之間的連接,作為SoC的片上系統(tǒng)總線,它包括以下一些特性:單個時鐘邊沿操作;非三態(tài)的實現(xiàn)方式;支持突發(fā)傳輸;支持分段傳輸;支持多個主控制器;可配置32位~128位總線寬度;支持字節(jié)、半字節(jié)和字的傳輸。AHB系統(tǒng)由主模塊、從模塊和基礎結構AHBInfrastructure)3部分組成,整個AHB總線上的傳輸都由主模塊發(fā)出,由從模塊負責回應。基礎結構則由仲裁器、主模塊到從模塊的多路器、從模塊到主模塊的多路器、譯碼器(decoder)、虛擬從模塊(dummySlave)、虛擬主模塊(dummyMaster)所組成。


關于300W,12VDC-DC轉換器,AHB是一種高效的選擇。由于初級電流滯后于變壓器的初級電壓,故可為兩個初級MOSFET的ZVS供應必要條件。類似于LLC,利用AHB實現(xiàn)ZVS的能力也取決于對電路寄生元素的透徹了解,比如變壓器漏電感、匝間電容和分立式器件的結電容。相比LLC控制中采用的可變頻率控制方法,固定頻率方法可以大大簡化次級端自驅動同步整流(SR)的任務。自驅動SR的柵極驅動電壓很容易由變壓器次級端推算出來。新增一個低端MOSFET驅動器,比如圖2所示的雙路4AFAN3224驅動器,就可以精確給出通過MOSFST米勒平坦區(qū)的電平轉換和高峰值驅動電流。


圖2.FAN3224,利用倍流整流器實現(xiàn)自驅動同步整流(SR)。


這種倍流整流器可用于任何雙端電源拓撲和大DC電流應用,它具有好幾個突出的特性。首先,其次級端由一個簡單繞組構成,可簡化變壓器結構。其次,由于所需的輸出電感被分配在兩個電感器上,因大電流流入次級端而出現(xiàn)的功耗得到更加有效的分布。第三,作為占空比(D)的函數(shù),兩個電感紋波電流彼此抵消。抵消掉的兩個電感電流之和擁有兩倍于開關頻率的視在頻率(apparentfrequency),故允許更高的頻率,此外流入輸出電感的峰值電流更低。


加在次級端整流器上的電壓不對稱可能是AHB的缺點之一。當AHB在其限值D=0.5附近工作時,加載的SR電壓幾乎可達到匹配。然而,更合理的方法是,通過對變壓器的匝數(shù)比進行設計,使D在額定工作期間保持在0.25


調節(jié)器之后是一個帶自驅動SR的不對稱半橋DC-DC轉換器,如圖1所示。


表1.小型AC-DC電源設計規(guī)格。

鉅大鋰電,22年專注鋰電池定制

鉅大核心技術能力