鉅大LARGE | 點擊量:987次 | 2021年12月06日
一種微電網(wǎng)中儲能電池系統(tǒng)的控制方法
摘要:本發(fā)明供應了一種微電網(wǎng)中儲能電池系統(tǒng)的控制方法,包括步驟:1)建立微電網(wǎng)系統(tǒng),配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù);2)測量儲能電池的荷電電量SOC,并計算負荷有功功率與間歇性電源最大發(fā)電有功功率之間的功率差;3)假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差大于零,則儲能電池工作在放電模式;假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差小于零,則儲能電池工作在充電模式,并根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段;4)根據(jù)儲能電池充放電狀態(tài)下的控制模式選擇間歇性電源的控制模式。該方法能夠有效延長儲能電池的充電壽命,提高了間歇性能源利用率和對電池充電的穩(wěn)定性。
發(fā)明人:彭勇段文輝王鵬姜祖明魏華勇黃夢蘭閆輝
1.一種微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于,包括步驟:
1)建立微電網(wǎng)系統(tǒng),配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù);
2)測量儲能電池的荷電電量SOC,并計算負荷有功功率與間歇性電源最大發(fā)電有功功率之間的功率差;
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
3)假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差大于零,則儲能電池工作在放電模式;假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差小于零,則儲能電池工作在充電模式,并根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段;
4)根據(jù)儲能電池充放電狀態(tài)下的控制模式選擇間歇性電源的控制模式。
2.根據(jù)權(quán)利要求1所述的微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于:配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù),包括將負荷分為重要負荷和可控負荷,負荷有功功率為重要負荷和可控負荷的功率之和。
3.根據(jù)權(quán)利要求2所述的微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于:儲能電池工作在放電模式,且儲能電池的荷電電量SOC<SOCMIN時,切除可控負荷,只為重要負荷供電,其中SOCMIN取值為0.5-0.6。
4.根據(jù)權(quán)利要求3所述的微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于:根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段,包括將儲能電池的充電階段分為恒流快速充電階段、恒壓充電階段和浮動充電階段;當SOCMIN<SOC<SOC1儲能電池處于恒流快速充電階段;當SOC1<SOC<SOC2時,儲能電池處于恒壓充電階段,當SOC2<SOC<SOC3時,儲能電池處于浮動充電階段;其中,SOC1取值為0.6-0.7,SOC2取值為0.7-0.9,SOC3取值為0.9-1.0。
5.根據(jù)權(quán)利要求4所述的微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于:儲能電池的充電階段還包括儲能電池去極化階段,采用按時去極化的方法,在一天中的某一固按時段對儲能電池進行均衡充電,以消除儲能電池單體之間電壓、容量的不均衡現(xiàn)象。
6.根據(jù)權(quán)利要求1-5任一項所述的微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于:當儲能電池工作在放電模式時,間歇性電源工作在最大功率跟蹤MPPT模式;當儲能電池工作在充電模式時,間歇性電源工作在最大功率跟蹤MPPT模式或者恒功率控制模式。
7.根據(jù)權(quán)利要求6所述的微電網(wǎng)中儲能電池系統(tǒng)的控制方法,其特點在于:當儲能電池工作在充電模式,且所述功率差小于儲能電池所需的充電功率時,間歇性電源工作在最大功率跟蹤MPPT模式;當儲能電池工作在充電模式,所述功率差大于儲能電池所需的充電功率時,間歇性電源工作在恒功率控制模式。
技術(shù)領(lǐng)域
本發(fā)明涉及微電網(wǎng)領(lǐng)域,具體的說,涉及了一種微電網(wǎng)中儲能電池系統(tǒng)的控制方法。
背景技術(shù)
可再生能源的大量開發(fā)和使用,是未來電網(wǎng)的必然趨勢,但是大多數(shù)可再生能源因為地理分散、波動性較大、電能質(zhì)量不高等因素不能大規(guī)模的及時并入電網(wǎng)。近些年研究發(fā)現(xiàn),建立微電網(wǎng)是解決這些分布式能源接入電網(wǎng)的有效途徑之一。微電網(wǎng)是一種由電源和負荷共同組成的系統(tǒng),為用戶供應電能和熱量。微電網(wǎng)有兩種工作模式,正常情況下和電網(wǎng)連接實現(xiàn)并網(wǎng)運行,在電網(wǎng)故障或電能波動過大時從電網(wǎng)斷開,實現(xiàn)孤島運行。孤島運行下,由于可再生能源輸出的波動性、隨機性、微型燃氣輪機和燃料動力鋰電池低速響應,快速的負荷波動會給微電網(wǎng)帶來很大的問題。配備一定容量的儲能裝置可以增大系統(tǒng)慣性,提高系統(tǒng)的動態(tài)響應速度,改善電能質(zhì)量,保障系統(tǒng)的安全穩(wěn)定運行。為了解決可再生能源波動性較大等問題,并使分布式能源得到充分的利用,微電網(wǎng)中包含了相應的儲能系統(tǒng)。儲能電池儲能,例如常見的鉛酸電池、鋰離子電池等,具有能量密度高,性能穩(wěn)定、壽命長,可以大規(guī)模生產(chǎn)和應用等優(yōu)點,在微電網(wǎng)系統(tǒng)中有廣泛應用。
在傳統(tǒng)的電池應用領(lǐng)域,例如電動汽車充電,電池的放電功率是隨機變化的,但是其充電過程非常穩(wěn)定,以保證其較長的使用壽命。因為大電網(wǎng)的穩(wěn)定性,電池采用恒流快速充電、恒壓充電、和浮動充電的模式。然而,在微電網(wǎng)中,間歇性電源不能供應穩(wěn)定的能源,儲能電池要供應頻率電壓支撐,其自身的充電功率是隨著間歇性電源的發(fā)電功率隨機變化的,因此儲能電池的控制方法和微電網(wǎng)的控制方法要協(xié)調(diào)一致,合理配合?,F(xiàn)在的間歇性可再生能源大多數(shù)時間都工作在MPPT工作模式,儲能電池的充電電流和電壓毫無規(guī)律,嚴重影響儲能電池的使用壽命。
為了解決以上存在的問題,人們一直在尋求一種理想的技術(shù)解決方法。
發(fā)明內(nèi)容
本發(fā)明的目的是針對現(xiàn)有技術(shù)的不足,從而供應一種設(shè)計科學、實用性強、配合合理、穩(wěn)定性高、利用率高的微電網(wǎng)中儲能電池系統(tǒng)的控制方法。
為了實現(xiàn)上述目的,本發(fā)明所采用的技術(shù)方法是:一種微電網(wǎng)中儲能電池系統(tǒng)的控制方法,包括步驟:1)建立微電網(wǎng)系統(tǒng),配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù);2)測量儲能電池的荷電電量SOC,并計算負荷有功功率與間歇性電源最大發(fā)電有功功率之間的功率差;3)假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差大于零,則儲能電池工作在放電模式;假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差小于零,則儲能電池工作在充電模式,并根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段;4)根據(jù)儲能電池充放電狀態(tài)下的控制模式選擇間歇性電源的控制模式。
基于上述,配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù),包括將負荷分為重要負荷和可控負荷,負荷有功功率為重要負荷和可控負荷的功率之和。
基于上述,儲能電池工作在放電模式,且儲能電池的荷電電量SOC可控負荷,只為重要負荷供電,其中SOCMIN取值為0.5-0.6。
基于上述,根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段,包括將儲能電池的充電階段分為恒流快速充電階段、恒壓充電階段和浮動充電階段;當SOCMIN<SOC<SOC1儲能電池處于恒流快速充電階段;當SOC1<SOC<SOC2時,儲能電池處于恒壓充電階段,當SOC2<SOC<SOC3時,儲能電池處于浮動充電階段;其中,SOC1取值為0.6-0.7,SOC2取值為0.7-0.9,SOC3取值為0.9-1.0。
基于上述,儲能電池的充電階段還包括儲能電池去極化階段,采用按時去極化的方法,在一天中的某一固按時段對儲能電池進行均衡充電,以消除儲能電池單體之間電壓、容量的不均衡現(xiàn)象。
基于上述,當儲能電池工作在放電模式時,間歇性電源工作在最大功率跟蹤MPPT模式;當儲能電池工作在充電模式時,間歇性電源工作在最大功率跟蹤MPPT模式或者恒功率控制模式。
基于上述,當儲能電池工作在充電模式,且所述功率差小于儲能電池所需的充電功率時,間歇性電源工作在最大功率跟蹤MPPT模式;當儲能電池工作在充電模式,所述功率差大于儲能電池所需的充電功率時,間歇性電源工作在恒功率控制模式。
本發(fā)明相對現(xiàn)有技術(shù)具有突出的實質(zhì)性特點和顯著的進步,具體的說,本發(fā)明通過合理設(shè)計逆變器容量、聯(lián)絡線功率和負荷有功功率,將儲能電池充電模式與微電網(wǎng)控制模式相配合,實現(xiàn)了對微電網(wǎng)內(nèi)電池的恒流、恒壓、浮動充電控制,保證了儲能電池充電的精確控制,延長了儲能電池壽命,提高了微電網(wǎng)內(nèi)的穩(wěn)定性,其具有設(shè)計科學、實用性強、配合合理、穩(wěn)定性高、利用率高的優(yōu)點。
附圖說明
圖1是本發(fā)明的結(jié)構(gòu)示意圖。
圖2是本發(fā)明的動力傳動及控制結(jié)構(gòu)示意圖。
圖3是本發(fā)明所述半成品的結(jié)構(gòu)示意圖。
具體執(zhí)行方式
下面通過具體執(zhí)行方式,對本發(fā)明的技術(shù)方法做進一步的詳細描述。
微電網(wǎng)控制的目的是在保證電網(wǎng)穩(wěn)定供電的前提下,提高可再生能源的利用率,保證微電網(wǎng)與傳統(tǒng)配電網(wǎng)協(xié)調(diào)配合,既可以利用分布式電源的可再生能源,又可以為電網(wǎng)內(nèi)部的負荷供應可靠的電能,甚至在傳統(tǒng)大電網(wǎng)發(fā)生故障的情況下,多個微電網(wǎng)之間、微電網(wǎng)內(nèi)部仍然可以可靠供電,并為大電網(wǎng)的啟動供應必要的條件。典型的微電網(wǎng)群結(jié)構(gòu)如圖1所示。然而,微電網(wǎng)內(nèi)部元件眾多復雜,常見的分布式電源如風力發(fā)電、光伏發(fā)電、微型燃氣發(fā)電等,其特性和運行方式各不相同,控制方式和電網(wǎng)結(jié)構(gòu)又多種多樣。例如微電網(wǎng)的類型包括直流匯流模式、交流匯流模式、集中控制模式、分散控制模式,典型的微電網(wǎng)內(nèi)部控制結(jié)構(gòu)如圖2所示。
微電網(wǎng)與其他電網(wǎng)之間,以及微電網(wǎng)與其他微電網(wǎng)之間,往往通過聯(lián)絡線連接,他們之間是一種弱耦合的關(guān)系,往往通過控制聯(lián)絡線的開閉和聯(lián)絡線的功率流動來彼此支持。
微電網(wǎng)控制的核心在于儲能系統(tǒng)的控制,儲能系統(tǒng)為電網(wǎng)供應可靠的頻率和電壓支撐,可以靈活根據(jù)系統(tǒng)的狀況調(diào)節(jié)功率平衡,提高穩(wěn)定性和經(jīng)濟效益。然而儲能電池本身的控制模式也受到其自身性能的影響和制約,本專利申請供應一種微電網(wǎng)中儲能電池系統(tǒng)的控制方法,包括步驟:1)建立微電網(wǎng)系統(tǒng),配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù);2)測量儲能電池的荷電電量SOC,并計算負荷有功功率與間歇性電源最大發(fā)電有功功率之間的功率差;3)假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差大于零,則儲能電池工作在放電模式;假如負荷有功功率和間歇性電源最大發(fā)電有功功率之間
的功率差小于零,則儲能電池工作在充電模式,并根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段;4)根據(jù)儲能電池充放電狀態(tài)下的控制模式選擇間歇性電源的控制模式。
具體的,配置儲能電池和通過聯(lián)絡線連接的負荷的控制參數(shù),包括將負荷分為重要負荷和可控負荷,負荷有功功率為重要負荷和可控負荷的功率之和。
當所述功率差大于零時,則儲能電池工作在放電模式,并且,當儲能電池容量SOC<SOCMIN時,切除可控負荷,只為重要負荷供電,其中SOCMIN取值為0.5-0.6
當負荷有功功率和間歇性電源最大發(fā)電有功功率之間的功率差小于零時,則儲能電池工作在充電模式。在儲能電池充電過程中,儲能電池的空載電壓不容易測量,儲能電池的內(nèi)阻也容易變化,不同于傳統(tǒng)的根據(jù)充電電壓確定儲能電池充電階段的方法,儲能電池荷電電量SOC可以通過電量積分法比較容易的測量,一般儲能電池電壓與儲能電池荷電量SOC具有相對穩(wěn)定的對應關(guān)系,因此,可以根據(jù)儲能電池荷電電量SOC合理劃分充電階段。
根據(jù)儲能電池荷電電量SOC選擇儲能電池的充電階段,包括將儲能電池的充電階段分為恒流快速充電階段、恒壓充電階段和浮動充電階段,當SOCMIN<SOC<SOC1儲能電池處于恒流快速充電階段;當SOC1<SOC<SOC2時,儲能電池處于恒壓充電階段,當SOC2<SOC<SOC3時,儲能電池處于浮動充電階段;其中,SOC1取值為0.6-0.7,SOC2取值為0.7-0.9,SOC3取值為0.9-1.0。
實際中,儲能電池的充電階段還包括儲能電池去極化階段,也即均衡充電階段。采用按時去極化的方法,在一天中的某一固按時段對儲能電池進行均衡充電,以消除儲能電池單體之間電壓、容量的不均衡現(xiàn)象。儲能電池單體之間的不均衡隨著使用時間的延長逐級嚴重,單體之間的不均衡影響儲能電池的充放電深度和測量準確度,采用較大的電壓在某一時間段對電池進行均衡充電,將降低儲能電池單體之間的不均衡,防止儲能電池極化,本執(zhí)行例中采用儲能電池額定電壓的1.3倍作為儲能電池均衡充電電壓。在均衡充電的模式下,仍然可以通過與聯(lián)絡線之間的功率流動來補償間歇性電源充電時不穩(wěn)定的情況,聯(lián)絡線功率PLEM滿足儲能電池穩(wěn)定的均衡充電模式下的功率,充電功率不再隨著間歇性電源的發(fā)電功率隨機變化,并且并不影響間歇性可再生能源的利用效率。
當儲能電池工作在放電模式時,間歇性電源工作在最大功率跟蹤MPPT模式;當儲能電池工作在充電模式時,間歇性電源工作在最大功率跟蹤MPPT模式或者恒功率控制模式。
具體地,當儲能電池工作在充電模式,且所述功率差小于儲能電池所需的充電功率時,間歇性電源工作在最大功率跟蹤MPPT模式;當儲能電池工作在充電模式,且所述功率差大于儲能電池所需的充電功率時,間歇性電源工作在恒功率控制模式。在充電模式下,可能存在上述功率差大于儲能電池所需的充電功率的情況,甚至上述功率差大于儲能電池所需的充電功率與聯(lián)絡線最大功率之和,這種情況下微電網(wǎng)系統(tǒng)存在嚴重的發(fā)電功率盈余,對系統(tǒng)的穩(wěn)定性出現(xiàn)影響,例如系統(tǒng)的頻率和電壓越上限,此時間歇性電源工作在恒功率控制模式,以降低其發(fā)電功率,保證系統(tǒng)的穩(wěn)定。
最后應當說明的是:以上執(zhí)行例僅用以說明本發(fā)明的技術(shù)方法而非對其限制;盡管參照較佳執(zhí)行例對本發(fā)明進行了詳細的說明,所屬領(lǐng)域的普通技術(shù)人員應當理解:依然可以對本發(fā)明的具體執(zhí)行方式進行修改或者對部分技術(shù)特點進行等同替換;而不脫離本發(fā)明技術(shù)方法的精神,其均應涵蓋在本發(fā)明請求保護的技術(shù)方法范圍當中。
責編:杉杉