少奴人妻久久中文字幕_亚洲无码二区东京热_国产高清无码日韩一二三区_制服丝袜人妻无码每日更新

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

錳酸鋰LMO正極材料面臨的主要問題

鉅大LARGE  |  點擊量:3085次  |  2019年03月26日  

現(xiàn)在越來越多的人意識到,氧缺陷是LMO高溫循環(huán)衰減的一個主要原因,因為LMO高溫循環(huán)衰減總是伴隨著Mn的化合價減小而增加的。筆者認為,如何減少錳酸鋰中引起歧化效應的Mn3+的數(shù)量而增加起結(jié)構(gòu)穩(wěn)定性的Mn4+,是改進LMO高溫缺陷的幾乎唯一的方法。

使得經(jīng)過循環(huán)或者存儲后的LMO表面生成Li2Mn2O4或者Mn平均化合價低于3對于LMO而言,高溫循環(huán)和存儲性能不佳是阻礙其大規(guī)模應用的最主要障礙。LMO高溫性能不佳一般認為主要是由以下幾個原因引起的:

①Jahn-Teller效應及鈍化層的形成,.5的缺陷尖晶石相。由于表面畸變的四方晶系與顆粒內(nèi)部的立方晶系不相容,破壞了結(jié)構(gòu)的完整性和顆粒間的有效接觸,從而影響Li+擴散和顆粒間的電導性而造成容量損失。

②氧缺陷,當尖晶石缺氧時在4.0V和4.2V平臺會同時出現(xiàn)容量衰減,并且氧的缺陷越多電池的容量衰減越快。此外,尖晶石結(jié)構(gòu)中氧的缺陷也會削弱金屬原子和氧原子之間的鍵能,而加劇錳的溶解。引起尖晶石錳酸鋰循環(huán)過程中氧缺陷主要來自兩個方面,一方面是合成條件造成尖晶石中氧低于標準化學計量比,另外一方面是在高溫條件下LMO對電解液有一定的催化作用,使得尖晶石失氧。

③Mn的溶解,電解液中存在的痕量水分會與電解液中的LiPF6反應生成HF,導致LiMn2O4發(fā)生歧化反應Mn2+溶到電解液中,并且尖晶石結(jié)構(gòu)被破壞,Mn的溶解機理如下圖所示。溶解在電解液中的Mn2+在石墨負極表面被還原成金屬Mn而催化分解SEI膜破壞負極界面,一部分Mn堵塞石墨嵌鋰通道,甚至還有一部分Mn沉積在Cu箔和負極涂層的界面上而造成負極剝離,這些因素都導致LMO電池容量衰減,甚至出現(xiàn)電池容量“跳水”而迅速失效的現(xiàn)象。④電解液在高電位下分解,在LMO表面形成Li2CO3薄膜使電池極化增大,從而造成尖晶石LiMn2O4在循環(huán)過程中容量衰減。

現(xiàn)在越來越多的人意識到,氧缺陷是LMO高溫循環(huán)衰減的一個主要原因,因為LMO高溫循環(huán)衰減總是伴隨著Mn的化合價減小而增加的。筆者認為,如何減少錳酸鋰中引起歧化效應的Mn3+的數(shù)量而增加起結(jié)構(gòu)穩(wěn)定性的Mn4+,是改進LMO高溫缺陷的幾乎唯一的方法。如果從這個角度來看,無論是添加過量的鋰或者摻雜各種改性元素都是為了達到這一目的。具體而言,針對LMO高溫性能的改進措施包括:

●雜原子摻雜,包括陽離子摻雜和陰離子摻雜。已經(jīng)研究過的陽離子摻雜元素包括Li,Mg,Al,Ti,Cr,Ni,Co等,實驗結(jié)果表明這些金屬離子摻雜或多或少都會對LMO的循環(huán)性能有一定改善,其中效果最明顯的是Al。Al摻雜的LiMn2O4脫鋰后形成的LiAlO2-MnO2固溶體比MnO2有更高的熱穩(wěn)定性。筆者個人認為,金屬離子的摻雜實際上是抑制了尖晶石錳酸鋰在合成過程中氧缺陷的產(chǎn)生,使得材料在充電過程中,整個高低壓區(qū)域內(nèi)都是單相反應,而不是結(jié)構(gòu)不穩(wěn)定的兩相區(qū)域。陰離子摻雜,研究得較多的是F和S,一些實驗結(jié)果也證實陰離子摻雜對改善循環(huán)性能也是有效的,但是因為陰離子摻雜一般比較困難而且對爐窯腐蝕較大,據(jù)筆者了解到的情況僅僅只有少數(shù)幾家公司采用了F摻雜。

●形貌控制。LMO的晶體形貌對Mn的溶解有著重大影響。對于尖晶石LMO而言,前驅(qū)體和合成條件不同可以得到多種多晶面的LMO,常見的晶體形貌有八面體和多面體。研究表明,錳的溶解主要發(fā)生在(111)晶面上,因此如何減小(111)面從而減少高溫儲藏過程中錳的溶解,是改善其高溫循環(huán)性的關(guān)鍵。有研究表明,多面體單晶LMO的(111)面比八面體的(111)面的比例要小,錳在電解液中的溶解量比八面體晶形低40%左右。因此在控制氧缺陷基礎(chǔ)上,可以通過控制單晶錳酸鋰微觀形貌的球形化來減小錳酸鋰的(111)晶面的比例,從而減少Mn的溶解。此外,單晶還可以減小材料表面積以降低顆粒與電解液的接觸面積,從而減少在電解液中Mn的溶解和其它副反應的發(fā)生。單晶顆??梢垣@得更高的電極壓實密度,對提高電池能量密度有益,因此目前綜合性能比較好的高端改性LMO都是單晶顆粒。

●表面包覆。既然Mn的溶解是LMO高溫性能差的主要原因之一,那么在LMO表面包覆一層能夠?qū)↙i+的界面層而機械隔離電解液與LMO的接觸,就可以改善LMO的高溫存儲和循環(huán)性。表面包覆Al2O3經(jīng)過熱處理以后,會在尖晶石顆粒表面形成了LiMn2-xAlxO4的固溶體,提高了晶體結(jié)構(gòu)的穩(wěn)定性改善了LMO的高溫循環(huán)性能和儲存性能,還提高了倍率性能。但是由于在工業(yè)化生產(chǎn)中往往很難實現(xiàn)LMO表面Al2O3的均勻包覆而影響實際效果,所以表面包覆在LMO實際生產(chǎn)上并不常用。近幾年發(fā)展起來的ALD技術(shù)可以實現(xiàn)LMO表面非常均勻地包覆數(shù)個原子層厚度的Al2O3,但是ALD包覆會造成LMO每噸5千到1萬元的成本增加,因此如何降低成本仍然是ALD技術(shù)實用化的前提條件。

●電解液優(yōu)化組分。試驗表明,電解液和電池工藝的匹配對LMO性能的發(fā)揮至關(guān)重要。由于電解液中的HF是導致Mn溶解的罪魁禍首,因此在電解液中添加酰胺化合物以抑制HF生產(chǎn)對提高LMO性能是有益的。另外,添加正極成膜添加劑,比如聯(lián)苯、二芐、甲基吡咯、噻吩以及一些芳香族化合物,都可以抑制Mn的溶解。因此,LMO高溫性能的發(fā)揮與電解液的匹配密切相關(guān),目前已經(jīng)有電解液廠家開發(fā)出了專供LMO使用的特種電解液。

●與二元/三元材料共混。LMO與NCA/NMC共混是動力電池一個比較現(xiàn)實的解決方案。比如日產(chǎn)Leaf就是在LMO里面共混11%NCA,GM的Volt也是加入了22%的NMC與LMO混合作為正極材料。關(guān)于共混正極材料,筆者將在隨后的章節(jié)專門進行探討。

筆者這里要強調(diào)的是,我們不能僅僅從LMO材料本身來考慮問題,因為正尖晶石LMO穩(wěn)定性的提高與LMO電池高溫性能的改善雖然相關(guān),但并不是同一個概念。引起LMO電池高溫性能衰減的原因除了正極材料的結(jié)構(gòu)因素之外,最直接的原因是溶解的Mn離子對于石墨負極的毒化。而Mn離子的溶解又與正極材料和電解液的相互作用直接相關(guān),所以做好正極和電解液的匹配降低Mn的溶解程度從而減少對負極的破壞,是解決LMO高溫性能的基本途徑。也就是說LMO電池需要綜合考慮正極、電解液和負極的整體匹配和相互作用問題,這就需要我們站在系統(tǒng)的高度進行電芯生產(chǎn)工藝的設(shè)計。

鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力