鉅大LARGE | 點擊量:2862次 | 2018年05月23日
如何使鋰離子電池的硅基負極材料合金化?
近年來,研究人員對硅基負極材料進行了大量的改性研究,取得了一定的進展。本文基于理論研究與實驗研究兩方面,總結目前國內外對硅基負極材料的研究方法和研究手段,希望對新型合金類負極材料的研究具有促進作用。
影響硅負極材料商業(yè)化最大的障礙是硅在充放電過程中較大的體積效應導致的材料粉化失效。實驗表明,引入第二組元形成“Si-M”活性-活性或活性-非活性體系能有效降低硅的體積膨脹系數,利用活性元素或者非活性元素本身的一些特性,如金屬延展性、成鍵特性等,緩解硅在嵌脫鋰過程中產生的體積效應。
Lee等人將硅粉放在銅基體表面,在真空下加熱至2000℃,形成以Cu為基體,自下而上從富銅態(tài)逐漸過渡到富Si態(tài)的Si-Cu合金薄膜負極材料。半電池測試顯示,100周循環(huán)后,薄膜樣品的質量比容量為1250mAh/g,面積比容量為1956mAh/cm3。但是過量的Cu導致部分晶態(tài)的硅存在,使得樣品的循環(huán)穩(wěn)定性相對較差。
楊娟等人采用機械球磨及退火處理相結合的方法制備Si-Fe復合負極材料,利用Si-Fe合金良好的導電性和延展性來改善Si的循環(huán)性能。結果表明,經過實驗處理后的物料部分達到了合金化,并且有不同形式的Si-Fe合金相形成,但合金化程度并不完全。Si-Fe合金的生成改善了Si作為鋰離子電池負極材料的循環(huán)性能,且合金化程度越高,合金材料電化學性能越好。
Zhang等人采用化學腐蝕、電化學還原和磁控濺射相結合的方法,制備三維納米結構多層Si/Al薄膜負極材料,樣品表現出較好的電化學性能,在4.2A/g的放電電流密度下,經120周循環(huán)后可逆比容量為1015mAh/g,即使放電電流增加至10A/g,可逆比容量仍達到919mAh/g。電化學性能的提升主要歸功于三維納米結構的有效分布。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%