少奴人妻久久中文字幕_亚洲无码二区东京热_国产高清无码日韩一二三区_制服丝袜人妻无码每日更新

低溫18650 3500
無(wú)磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

太陽(yáng)能電池及其材料研究

鉅大LARGE  |  點(diǎn)擊量:984次  |  2019年08月09日  

太陽(yáng)能電池及材料研究

引言


太陽(yáng)能是人類取之不盡用之不竭的可再生能源.也是清潔能源,不產(chǎn)生任何的環(huán)境污染。在太陽(yáng)能的有效利用當(dāng)中;大陽(yáng)能光電利用是近些年來(lái)發(fā)展最快,最具活力的研究領(lǐng)域,是其中最受矚目的項(xiàng)目之一。為此,人們研制和開發(fā)了太陽(yáng)能電池。制作太陽(yáng)能電池主要是以半導(dǎo)體材料為基礎(chǔ),其工作原理是利用光電材料吸收光能后發(fā)生光電于轉(zhuǎn)換反應(yīng),根據(jù)所用材料的不同,太陽(yáng)能電池可分為:1、硅太陽(yáng)能電池;2、以無(wú)機(jī)鹽如砷化鎵III-V化合物、硫化鎘、銅銦硒等多元化合物為材料的電池;3、功能高分子材料制備的大陽(yáng)能電池;4、納米晶太陽(yáng)能電池等。不論以何種材料來(lái)制作電池,對(duì)太陽(yáng)能電池材料一般的要求有:1、半導(dǎo)體材料的禁帶不能太寬;②要有較高的光電轉(zhuǎn)換效率:3、材料本身對(duì)環(huán)境不造成污染;4、材料便于工業(yè)化生產(chǎn)且材料性能穩(wěn)定。基于以上幾個(gè)方面考慮,硅是最理想的太陽(yáng)能電池材料,這也是太陽(yáng)能電池以硅材料為主的主要原因。但隨著新材料的不斷開發(fā)和相關(guān)技術(shù)的發(fā)展,以其它村料為基礎(chǔ)的太陽(yáng)能電池也愈來(lái)愈顯示出誘人的前景。本文簡(jiǎn)要地綜述了太陽(yáng)能電池的種類及其研究現(xiàn)狀,并討論了太陽(yáng)能電池的發(fā)展及趨勢(shì)。


1硅系太陽(yáng)能電池


1.1單晶硅太陽(yáng)能電池


硅系列太陽(yáng)能電池中,單晶硅大陽(yáng)能電池轉(zhuǎn)換效率最高,技術(shù)也最為成熟。高性能單晶硅電池是建立在高質(zhì)量單晶硅材料和相關(guān)的成熱的加工處理工藝基礎(chǔ)上的?,F(xiàn)在單晶硅的電地工藝己近成熟,在電池制作中,一般都采用表面織構(gòu)化、發(fā)射區(qū)鈍化、分區(qū)摻雜等技術(shù),開發(fā)的電池主要有平面單晶硅電池和刻槽埋柵電極單晶硅電池。提高轉(zhuǎn)化效率主要是靠單晶硅表面微結(jié)構(gòu)處理和分區(qū)摻雜工藝。在此方面,德國(guó)夫朗霍費(fèi)費(fèi)萊堡太陽(yáng)能系統(tǒng)研究所保持著世界領(lǐng)先水平。該研究所采用光刻照相技術(shù)將電池表面織構(gòu)化,制成倒金字塔結(jié)構(gòu)。并在表面把一13nm。厚的氧化物鈍化層與兩層減反射涂層相結(jié)合.通過改進(jìn)了的電鍍過程增加?xùn)艠O的寬度和高度的比率:通過以上制得的電池轉(zhuǎn)化效率超過23%,是大值可達(dá)23.3%。Kyocera公司制備的大面積(225cm2)單電晶太陽(yáng)能電池轉(zhuǎn)換效率為19.44%,國(guó)內(nèi)北京太陽(yáng)能研究所也積極進(jìn)行高效晶體硅太陽(yáng)能電池的研究和開發(fā),研制的平面高效單晶硅電池(2cmX2cm)轉(zhuǎn)換效率達(dá)到19.79%,刻槽埋柵電極晶體硅電池(5cmX5cm)轉(zhuǎn)換效率達(dá)8.6%。


單晶硅太陽(yáng)能電池轉(zhuǎn)換效率無(wú)疑是最高的,在大規(guī)模應(yīng)用和工業(yè)生產(chǎn)中仍占據(jù)主導(dǎo)地位,但由于受單晶硅材料價(jià)格及相應(yīng)的繁瑣的電池工藝影響,致使單晶硅成本價(jià)格居高不下,要想大幅度降低其成本是非常困難的。為了節(jié)省高質(zhì)量材料,尋找單晶硅電池的替代產(chǎn)品,現(xiàn)在發(fā)展了薄膜太陽(yáng)能電池,其中多晶硅薄膜太陽(yáng)能電池和非晶硅薄膜太陽(yáng)能電池就是典型代表。


1.2多晶硅薄膜太陽(yáng)能電池


通常的晶體硅太陽(yáng)能電池是在厚度350~450μm的高質(zhì)量硅片上制成的,這種硅片從提拉或澆鑄的硅錠上鋸割而成。因此實(shí)際消耗的硅材料更多。為了節(jié)省材料,人們從70年代中期就開始在廉價(jià)襯底上沉積多晶硅薄膜,但由于生長(zhǎng)的硅膜晶粒大小,未能制成有價(jià)值的太陽(yáng)能電池。為了獲得大尺寸晶粒的薄膜,人們一直沒有停止過研究,并提出了很多方法。目前制備多晶硅薄膜電池多采用化學(xué)氣相沉積法,包括低壓化學(xué)氣相沉積(LpCVD)和等離子增強(qiáng)化學(xué)氣相沉積(pECVD)工藝。此外,液相外延法(LppE)和濺射沉積法也可用來(lái)制備多晶硅薄膜電池。


化學(xué)氣相沉積主要是以SiH2Cl2、SiHCl3、Sicl4或SiH4,為反應(yīng)氣體,在一定的保護(hù)氣氛下反應(yīng)生成硅原子并沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發(fā)現(xiàn),在非硅襯底上很難形成較大的晶粒,并且容易在晶粒間形成空隙。解決這一問題辦法是先用LpCVD在襯底上沉熾一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然后再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結(jié)晶技術(shù)無(wú)疑是很重要的一個(gè)環(huán)節(jié),目前采用的技術(shù)主要有固相結(jié)晶法和中區(qū)熔再結(jié)晶法。多晶硅薄膜電池除采用了再結(jié)晶工藝外,另外采用了幾乎所有制備單晶硅太陽(yáng)能電池的技術(shù),這樣制得的太陽(yáng)能電池轉(zhuǎn)換效率明顯提高。德國(guó)費(fèi)萊堡太陽(yáng)能研究所采用區(qū)館再結(jié)晶技術(shù)在FZSi襯底上制得的多晶硅電池轉(zhuǎn)換效率為19%,日本三菱公司用該法制備電池,效率達(dá)16.42%。


液相外延(LpE)法的原理是通過將硅熔融在母體里,降低溫度析出硅膜。美國(guó)Astropower公司采用LpE制備的電池效率達(dá)12.2%。中國(guó)光電發(fā)展技術(shù)中心的陳哲良采用液相外延法在冶金級(jí)硅片上生長(zhǎng)出硅晶粒,并設(shè)計(jì)了一種類似于晶體硅薄膜太陽(yáng)能電池的新型太陽(yáng)能電池,稱之為“硅?!碧?yáng)能電池,但有關(guān)性能方面的報(bào)道還未見到。


多晶硅薄膜電池由于所使用的硅遠(yuǎn)較單晶硅少,又無(wú)效率衰退問題,并且有可能在廉價(jià)襯底材料上制備,其成本遠(yuǎn)低于單晶硅電池,而效率高于非晶硅薄膜電池,因此,多晶硅薄膜電池不久將會(huì)在太陽(yáng)能電地市場(chǎng)上占據(jù)主導(dǎo)地位。


1.3非晶硅薄膜太陽(yáng)能電池


開發(fā)太陽(yáng)能電池的兩個(gè)關(guān)鍵問題就是:提高轉(zhuǎn)換效率和降低成本。由于非晶硅薄膜太陽(yáng)能電池的成本低,便于大規(guī)模生產(chǎn),普遍受到人們的重視并得到迅速發(fā)展,其實(shí)早在70年代初,Carlson等就已經(jīng)開始了對(duì)非晶硅電池的研制工作,近幾年它的研制工作得到了迅速發(fā)展,目前世界上己有許多家公司在生產(chǎn)該種電池產(chǎn)品。


非晶硅作為太陽(yáng)能材料盡管是一種很好的電池材料,但由于其光學(xué)帶隙為1.7eV,使得材料本身對(duì)太陽(yáng)輻射光譜的長(zhǎng)波區(qū)域不敏感,這樣一來(lái)就限制了非晶硅太陽(yáng)能電池的轉(zhuǎn)換效率。此外,其光電效率會(huì)隨著光照時(shí)間的延續(xù)而衰減,即所謂的光致衰退S一W效應(yīng),使得電池性能不穩(wěn)定。解決這些問題的這徑就是制備疊層太陽(yáng)能電池,疊層太陽(yáng)能電池是由在制備的p、i、n層單結(jié)太陽(yáng)能電池上再沉積一個(gè)或多個(gè)p-i-n子電池制得的。疊層太陽(yáng)能電池提高轉(zhuǎn)換效率、解決單結(jié)電池不穩(wěn)定性的關(guān)鍵問題在于:①它把不同禁帶寬度的材科組臺(tái)在一起,提高了光譜的響應(yīng)范圍;②頂電池的i層較薄,光照產(chǎn)生的電場(chǎng)強(qiáng)度變化不大,保證i層中的光生載流子抽出;③底電池產(chǎn)生的載流子約為單電池的一半,光致衰退效應(yīng)減??;④疊層太陽(yáng)能電池各子電池是串聯(lián)在一起的。


非晶硅薄膜太陽(yáng)能電池的制備方法有很多,其中包括反應(yīng)濺射法、pECVD法、LpCVD法等,反應(yīng)原料氣體為H2稀釋的SiH4,襯底主要為玻璃及不銹鋼片,制成的非晶硅薄膜經(jīng)過不同的電池工藝過程可分別制得單結(jié)電池和疊層太陽(yáng)能電池。目前非晶硅太陽(yáng)能電池的研究取得兩大進(jìn)展:第一、三疊層結(jié)構(gòu)非晶硅太陽(yáng)能電池轉(zhuǎn)換效率達(dá)到13%,創(chuàng)下新的記錄;第二.三疊層太陽(yáng)能電池年生產(chǎn)能力達(dá)5MW。美國(guó)聯(lián)合太陽(yáng)能公司(VSSC)制得的單結(jié)太陽(yáng)能電池最高轉(zhuǎn)換效率為9.3%,三帶隙三疊層電池最高轉(zhuǎn)換效率為13%.


上述最高轉(zhuǎn)換效率是在小面積(0.25cm2)電池上取得的。曾有文獻(xiàn)報(bào)道單結(jié)非晶硅太陽(yáng)能電池轉(zhuǎn)換效率超過12.5%,日本中央研究院采用一系列新措施,制得的非晶硅電池的轉(zhuǎn)換效率為13.2%。國(guó)內(nèi)關(guān)于非晶硅薄膜電池特別是疊層太陽(yáng)能電池的研究并不多,南開大學(xué)的耿新華等采用工業(yè)用材料,以鋁背電極制備出面積為20X20cm2、轉(zhuǎn)換效率為8.28%的a-Si/a-Si疊層太陽(yáng)能電池。


非晶硅太陽(yáng)能電池由于具有較高的轉(zhuǎn)換效率和較低的成本及重量輕等特點(diǎn),有著極大的潛力。但同時(shí)由于它的穩(wěn)定性不高,直接影響了它的實(shí)際應(yīng)用。如果能進(jìn)一步解決穩(wěn)定性問題及提高轉(zhuǎn)換率問題,那么,非晶硅大陽(yáng)能電池?zé)o疑是太陽(yáng)能電池的主要發(fā)展產(chǎn)品之一。


2多元化合物薄膜太陽(yáng)能電池


為了尋找單晶硅電池的替代品,人們除開發(fā)了多晶硅、非晶硅薄膜太陽(yáng)能電池外,又不斷研制其它材料的太陽(yáng)能電池。其中主要包括砷化鎵III-V族化合物、硫化鎘、硫化鎘及銅錮硒薄膜電池等。上述電池中,盡管硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽(yáng)能電池效率高,成本較單晶硅電池低,并且也易于大規(guī)模生產(chǎn),但由于鎘有劇毒,會(huì)對(duì)環(huán)境造成嚴(yán)重的污染,因此,并不是晶體硅太陽(yáng)能電池最理想的替代


砷化鎵III-V化合物及銅銦硒薄膜電池由于具有較高的轉(zhuǎn)換效率受到人們的普遍重視。GaAs屬于III-V族化合物半導(dǎo)體材料,其能隙為1.4eV,正好為高吸收率太陽(yáng)光的值,因此,是很理想的電池材料。GaAs等III-V化合物薄膜電池的制備主要采用MOVpE和LpE技術(shù),其中MOVpE方法制備GaAs薄膜電池受襯底位錯(cuò)、反應(yīng)壓力、III-V比率、總流量等諸多參數(shù)的影響。


除GaAs外,其它III-V化合物如Gasb、GaInp等電池材料也得到了開發(fā)。1998年德國(guó)費(fèi)萊堡太陽(yáng)能系統(tǒng)研究所制得的GaAs太陽(yáng)能電池轉(zhuǎn)換效率為24.2%,為歐洲記錄。首次制備的GaInp電池轉(zhuǎn)換效率為14.7%.見表2。另外,該研究所還采用堆疊結(jié)構(gòu)制備GaAs,Gasb電池,該電池是將兩個(gè)獨(dú)立的電池堆疊在一起,GaAs作為上電池,下電池用的是Gasb,所得到的電池效率達(dá)到31.1%。


銅銦硒CuInSe2簡(jiǎn)稱CIC。CIS材料的能降為1.leV,適于太陽(yáng)光的光電轉(zhuǎn)換,另外,CIS薄膜太陽(yáng)電池不存在光致衰退問題。因此,CIS用作高轉(zhuǎn)換效率薄膜太陽(yáng)能電池材料也引起了人們的注目。


CIS電池薄膜的制備主要有真空蒸鍍法和硒化法。真空蒸鍍法是采用各自的蒸發(fā)源蒸鍍銅、銦和硒,硒化法是使用H2Se疊層膜硒化,但該法難以得到組成均勻的CIS。CIS薄膜電池從80年代最初8%的轉(zhuǎn)換效率發(fā)展到目前的15%左右。日本松下電氣工業(yè)公司開發(fā)的摻鎵的CIS電池,其光電轉(zhuǎn)換效率為15.3%(面積1cm2)。1995年美國(guó)可再生能源研究室研制出轉(zhuǎn)換效率為17.l%的CIS太陽(yáng)能電池,這是迄今為止世界上該電池的最高轉(zhuǎn)換效率。預(yù)計(jì)到2000年CIS電池的轉(zhuǎn)換效率將達(dá)到20%,相當(dāng)于多晶硅太陽(yáng)能電池。


CIS作為太陽(yáng)能電池的半導(dǎo)體材料,具有價(jià)格低廉、性能良好和工藝簡(jiǎn)單等優(yōu)點(diǎn),將成為今后發(fā)展太陽(yáng)能電池的一個(gè)重要方向。唯一的問題是材料的來(lái)源,由于銦和硒都是比較稀有的元素,因此,這類電池的發(fā)展又必然受到限制。


3聚合物多層修飾電極型太陽(yáng)能電池


在太陽(yáng)能電池中以聚合物代替無(wú)機(jī)材料是剛剛開始的一個(gè)太陽(yáng)能電池制爸的研究方向。其原理是利用不同氧化還原型聚合物的不同氧化還原電勢(shì),在導(dǎo)電材料(電極)表面進(jìn)行多層復(fù)合,制成類似無(wú)機(jī)p-N結(jié)的單向?qū)щ娧b置。其中一個(gè)電極的內(nèi)層由還原電位較低的聚合物修飾,外層聚合物的還原電位較高,電子轉(zhuǎn)移方向只能由內(nèi)層向外層轉(zhuǎn)移;另一個(gè)電極的修飾正好相反,并且第一個(gè)電極上兩種聚合物的還原電位均高于后者的兩種聚合物的還原電位。當(dāng)兩個(gè)修飾電極放入含有光敏化劑的電解波中時(shí).光敏化劑吸光后產(chǎn)生的電子轉(zhuǎn)移到還原電位較低的電極上,還原電位較低電極上積累的電子不能向外層聚合物轉(zhuǎn)移,只能通過外電路通過還原電位較高的電極回到電解液,因此外電路中有光電流產(chǎn)生。


由于有機(jī)材料柔性好,制作容易,材料來(lái)源廣泛,成本底等優(yōu)勢(shì),從而對(duì)大規(guī)模利用太陽(yáng)能,提供廉價(jià)電能具有重要意義。但以有機(jī)材料制備太陽(yáng)能電池的研究?jī)H僅剛開始,不論是使用壽命,還是電池效率都不能和無(wú)機(jī)材料特別是硅電池相比。能否發(fā)展成為具有實(shí)用意義的產(chǎn)品,還有待于進(jìn)一步研究探索。


4納米晶化學(xué)太陽(yáng)能電池


在太陽(yáng)能電池中硅系太陽(yáng)能電池?zé)o疑是發(fā)展最成熟的,但由于成本居高不下,遠(yuǎn)不能滿足大規(guī)模推廣應(yīng)用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進(jìn)行探索,而這當(dāng)中新近發(fā)展的納米TIO2晶體化學(xué)能太陽(yáng)能電池受到國(guó)內(nèi)外科學(xué)家的重視。


自瑞士Gratzel教授研制成功納米TIO2化學(xué)大陽(yáng)能電池以來(lái),國(guó)內(nèi)一些單位也正在進(jìn)行這方面的研究。納米晶化學(xué)太陽(yáng)能電池(簡(jiǎn)稱NpC電池)是由一種在禁帶半導(dǎo)體材料修飾、組裝到另一種大能隙半導(dǎo)體材料上形成的,窄禁帶半導(dǎo)體材料采用過渡金屬Ru以及Os等的有機(jī)化合物敏化染料,大能隙半導(dǎo)體材料為納米多晶TIO2并制成電極,此外NpC電池還選用適當(dāng)?shù)难趸贿€原電解質(zhì)。納米晶TIO2工作原理:染料分子吸收太陽(yáng)光能躍遷到激發(fā)態(tài),激發(fā)態(tài)不穩(wěn)定,電子快速注入到緊鄰的TiO2導(dǎo)帶,染料中失去的電子則很快從電解質(zhì)中得到補(bǔ)償,進(jìn)入TiO2導(dǎo)帶中的電于最終進(jìn)入導(dǎo)電膜,然后通過外回路產(chǎn)生光電流。


納米晶TiO2太陽(yáng)能電池的優(yōu)點(diǎn)在于它廉價(jià)的成本和簡(jiǎn)單的工藝及穩(wěn)定的性能。其光電效率穩(wěn)定在10%以上,制作成本僅為硅太陽(yáng)電池的1/5~1/10.壽命能達(dá)到2O年以上。但由于此類電池的研究和開發(fā)剛剛起步,估計(jì)不久的將來(lái)會(huì)逐步走上市場(chǎng)。


5太陽(yáng)能電池的發(fā)展趨勢(shì)


從以上幾個(gè)方面的討論可知,作為太陽(yáng)能電池的材料,III-V族化合物及CIS等系由稀有元素所制備,盡管以它們制成的太陽(yáng)能電池轉(zhuǎn)換效率很高,但從材料來(lái)源看,這類太陽(yáng)能電池將來(lái)不可能占據(jù)主導(dǎo)地位。而另兩類電池納米晶太陽(yáng)能電池和聚合物修飾電極太陽(yáng)能電地存在的問題,它們的研究剛剛起步,技術(shù)不是很成熟,轉(zhuǎn)換效率還比較低,這兩類電池還處于探索階段,短時(shí)間內(nèi)不可能替代應(yīng)系太陽(yáng)能電池。因此,從轉(zhuǎn)換效率和材料的來(lái)源角度講,今后發(fā)展的重點(diǎn)仍是硅太陽(yáng)能電池特別是多晶硅和非晶硅薄膜電池。由于多晶硅和非晶硅薄膜電池具有較高的轉(zhuǎn)換效率和相對(duì)較低的成本,將最終取代單晶硅電池,成為市場(chǎng)的主導(dǎo)產(chǎn)品。


提高轉(zhuǎn)換效率和降低成本是太陽(yáng)能電池制備中考慮的兩個(gè)主要因素,對(duì)于目前的硅系太陽(yáng)能電池,要想再進(jìn)一步提高轉(zhuǎn)換效率是比較困難的。因此,今后研究的重點(diǎn)除繼續(xù)開發(fā)新的電池材料外應(yīng)集中在如何降低成本上來(lái),現(xiàn)有的高轉(zhuǎn)換效率的太陽(yáng)能電池是在高質(zhì)量的硅片上制成的,這是制造硅太陽(yáng)能電池最費(fèi)錢的部分。因此,在如何保證轉(zhuǎn)換效率仍較高的情況下來(lái)降低襯底的成本就顯得尤為重要。也是今后太陽(yáng)能電池發(fā)展急需解決的問題。近來(lái)國(guó)外曾采用某些技術(shù)制得硅條帶作為多晶硅薄膜太陽(yáng)能電池的基片,以達(dá)到降低成本的目的,效果還是比較現(xiàn)想的。

本條新聞來(lái)源于中國(guó)太陽(yáng)能網(wǎng)|www.tyn.cc原文鏈接:http://www.cn-solar.net/news/200909//200992311115882.html


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力