少奴人妻久久中文字幕_亚洲无码二区东京热_国产高清无码日韩一二三区_制服丝袜人妻无码每日更新

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

什么是磷酸亞鐵鋰合成技術(shù)?

鉅大LARGE  |  點擊量:1240次  |  2019年08月09日  

什么是磷酸亞鐵鋰合成技術(shù)?


LiNiO2成本較低,容量較高,但制備困難,材料性能的一致性和重現(xiàn)性差,存在較為嚴重的安全問題。

LiNil/3Co1/3Mnl/302可看成LiNi02和LiCoO2的固溶體,兼有LiNiO2和LiCoO2的優(yōu)點,一度被人們認為是最有可能取代LiCoO2的新型正極材料,但仍存在合成條件較為苛刻(需要氧氣氣氛)、安全性較差等缺點,綜合性能有待改進;同時由于含較多昂貴的Co,成本也較高。

尖晶石LiMn2O4成本低,安全性好,但循環(huán)性能尤其是高溫循環(huán)性能差,在電解液中有一定的溶解性,儲存性能差。

新型的三元復(fù)合氧化物鎳鈷錳酸鋰(LiNil/3Co1/3Mnl/302)材料集中了LiCoO2、LiNiO2、LiMn2O4等材料的各自優(yōu)點:成本與LiNil/3Co1/3Mnl/3O2相當,可逆容量大,結(jié)構(gòu)穩(wěn)定,安全性較好,介于LiNi0.8Co0.2O2和LiMn2O4之間,循環(huán)性能好,合成容易;但由于含較多昂貴的Co,成本也較高。

對中大容量、中高功率的鋰離子電池來說,正極材料的成本、高溫性能、安全性十分重要。上述LiCoO2、LiNiO2、LiMn2O4及其衍生物正極材料尚不能滿足要求。因此,研究開發(fā)能用于中大容量、中高功率的鋰離子電池的新型正極材料成為當前的熱點。

正交橄欖石結(jié)構(gòu)的LiFepO4正極材料已逐漸成為國內(nèi)外新的研究熱點。初步研究表明,該新型正極材料集中了LiCoO2、LiNiO2、LiMn2O4及其衍生物正極材料的各自優(yōu)點:不含貴重元素,原料廉價,資源極大豐富;工作電壓適中(3.4V);平臺特性好,電壓極平穩(wěn)(可與穩(wěn)壓電源媲美);理論容量大(170mAh/g);結(jié)構(gòu)穩(wěn)定,安全性能極佳(O與p以強共價鍵牢固結(jié)合,使材料很難析氧分解);高溫性能和熱穩(wěn)定性明顯優(yōu)于已知的其它正極材料;循環(huán)性能好;充電時體積縮小,與碳負極材料配合時的體積效應(yīng)好;與大多數(shù)電解液系統(tǒng)相容性好,儲存性能好;無毒,為真正的綠色材料。與LiCoO2、LiNiO2、LiMn2O4及其衍生物正極材料相比,LiFepO4正極材料在成本、高溫性能、安全性方面具有突出的優(yōu)勢,可望成為中大容量、中高功率鋰離子電池首選的正極材料。該材料的產(chǎn)業(yè)化和普及應(yīng)用對降低鋰離子電池成本,提高電池安全性,擴大鋰離子電池產(chǎn)業(yè),促進鋰離子電池大型化、高功率化具有十分重大的意義,將使鋰離子電池在中大容量UpS、中大型儲能電池、電動工具、電動汽車中的應(yīng)用成為現(xiàn)實。

然而,磷酸鐵鋰存在兩個明顯的缺點,一是電導(dǎo)率低,導(dǎo)致高倍率充放電性能差,實際比容量低;二是堆積密度低,導(dǎo)致體積比容量低。這兩個缺點阻礙了該材料的實際應(yīng)用。

當前,人們的研究注意力集中在解決磷酸跌鋰電導(dǎo)率低這一領(lǐng)域,并取得了重大進展。采取的改進措施主要有:

(1)往磷酸鐵鋰顆粒內(nèi)部摻入導(dǎo)電碳材料或?qū)щ娊饘傥⒘?,或者往磷酸鐵鋰顆粒表面包覆導(dǎo)電碳材料,提高材料的電子電導(dǎo)率。

(2)往磷酸鐵鋰(1ipepO4)晶格中摻入少量雜質(zhì)金屬離子,如Mg2+、TI4+、Zr4+、Nb5+,取代一部分Li+廣的位置,從而使磷酸鐵鋰本征半導(dǎo)體轉(zhuǎn)變?yōu)閚型或p型半導(dǎo)體,顯著提高了材料的電子電導(dǎo)率。

(3)往磷酸鐵鋰中摻入Mn2+等雜質(zhì)元素,取代一部分Fe2+的位置,增大磷酸鐵鋰的晶胞參數(shù),提高材料的鋰離子電導(dǎo)率。

(4)采用溶膠凝膠法、液相合成法等新工藝,減小磷酸鐵鋰晶粒的大小,甚至合成納米磷酸鐵鋰,盡量縮短Li+的擴散距離,表觀上提高了材料的鋰離子電導(dǎo)率和材料利用率。

然而,磷酸鐵鋰堆積密度低的缺點一直受到人們的忽視和回避,尚未得到解決,阻礙了材料的實際應(yīng)用。鈷酸鋰的理論密度為5.1g/cm3,商品鉆酸鋰的振實密度一般為2.0-2.4g/cm3;而磷酸鐵鋰的理論密度僅為3.6g/cm3,本身就比鈷酸鋰要低得多。為提高導(dǎo)電性,人們摻入導(dǎo)電碳材料,又顯著降低了材料的堆積密度,使得一般摻碳磷酸鐵鋰的振實密度只有1.0-1.2g/cm3。如此低的堆積密度使得磷酸鐵鋰的體積比容量比鈷酸鋰低很多,制成的電池體積將十分龐大,不僅毫無優(yōu)勢可言,而且很難應(yīng)用于實際。

因此,提高磷酸鐵鋰的堆積密度和體積比容量對磷酸鐵鋰的實用化具有決定意義。粉體材料的顆粒形貌、粒徑及其分布直接影響材料的堆積密度。舉例來說,Ni(OH)2是用于鎳氫電池和鎳鎘電池的正極材料。以前,人們采用片狀的Ni(OH)2,其振實密度只有1.5—1.6g/cm3;

目前采用的球形Ni(OH)2的振實密度可達2.2—2.3g/cm3;球形Ni(OH)2已基本上取代了片狀的Ni(OH)2,顯著提高了鎳氫電池和鎳鎘電池的能量密度。本實驗室借鑒高密度球形Ni(OH)2的研究成果,開發(fā)成功了鋰離子電池高密度球形系列正極材料,包括LiCoO2、liMn2O4、LiNi0.8Co0.2O2、LiNil/3Co1/3Mnl/3O2等。其中LiCoO2、LiNi0.8Co0.2O2的振實密度已可達到2,9g/cm3,遠高于商品化的同類材料。研究和實際應(yīng)用表明,球形產(chǎn)品不僅具有堆積密度高、體積比容量大等突出優(yōu)點,而且還具有優(yōu)異的流動性、分散性和可加工*能,十分有*利于制作正極材料漿料和電極片的涂覆,提高電極片質(zhì)量;此外,相對于無規(guī)則的顆粒,規(guī)則的球形顆粒表面比較容易包覆完整、均勻、牢固的修飾層,因此球形產(chǎn)品更有希望通過表面修飾進一步改善綜合性能。

在此基礎(chǔ)上,我們提出:球形化是鋰離子電池正極材料的發(fā)展方向。目前國內(nèi)外報道的.LiFepO4正極材料都是由無規(guī)則的顆粒組成的,粉體材料的堆積密度和能量密度較低。因此,本項目致力于LiFepO4材料顆粒的球形化,通過顆粒的球形化來提高材料的堆積密度和體積比容量;在此基礎(chǔ)上,發(fā)揮球形材料易于表面包覆的優(yōu)勢,進一步通過球形顆粒的表面修飾提高材料的綜合性能。在對LiFepO4材料顆粒的球形化和表面修飾的過程中,充分借鑒、吸收、利用人們在提高磷酸鐵鋰的電導(dǎo)率方面已取得的優(yōu)秀成果;最終制備出球形、高堆積密度、高體積比容量、高導(dǎo)電性的LiFepO4正極材料,使之能應(yīng)用于中大容量、中高功率的鋰離子電池,促進該材料的產(chǎn)業(yè)化。

目前,本研究室采用二價鐵鹽或三價鐵鹽、磷酸或磷酸鹽、氨水為原料,通過控制結(jié)晶技術(shù)合成高密度球形磷酸鐵前驅(qū)體,再與鋰源、碳源共混熱處理,通過碳熱還原法合成摻碳的高密度球形磷酸鐵鋰。該磷酸鐵鋰粉體材料由單分散球形顆粒組成、粒徑5-10um、堆積密度大(振實密度可達“-1.8g/cm3)、流動性好、可加工性能好,可逆容量140MLNg。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力